PreCalculus Cumulative Review 1

#1) Albert hits a fastball. The table below shows the height from the ground of the baseball over time. Graph the data with a friendly window. Record it below.

Time (sec)	0	0.25	0.5	0.75	1	1.25
Distance (ft)	3	26	45	60	71	78

a. Record a friendly window.

UTHDOLL	
MINDOM	
Xmin=	
Xmax=	
Vac1-	
0361-	
Ymin=	
Ymax=	
Vec1=	
Ares-1	

b. What type of regression model would be most appropriate?

e. Find the times (to 3 decimals) at which the ball will be 60 feet in the air.

c. Use regression to write the equation of the model.

f. When (to 3 decimals) will the ball hit the ground?

d. Predict the height (to 3 decimals) of the baseball at 3.0 seconds.

g. What does the y-intercept represent? (Sentence answer).

JITNDOI

#10) Reflection:

#11) Sketch Graph

Pre-Calculus Page 2 of 4

PreCalculus
Cumulative Review 1
Use
$$f(x) = \frac{52}{x^2 - 25x}$$
 to answer the following questions.
#15) Vertical Asymptotes/Holes:
#16) x-intercepts:
#17) Horizontal/Slant Asymptotes:
#18) Graph it
#14) Evaluate
log_ 81

Pre-Calculus Page **3** of **4**

PreCalculus

Cumulative Review 1						
#19) Find the reference angle for the angle -40°.	 #22) Alyssa was assigned the following problem to do in math class "A 20-foot ladder is leaning on the outside of a house. If the angle formed by the ladder and the level ground is 60°, to the nearest hundredth how far up the side of the house does the ladder reach?" After finishing the problem, Alyssa immediately knew her answer of 25 feet was unreasonable. What makes her answer impossible? Include at least one mathematical principle in your explanation. 					
Reference angle =						
#20) Suppose $tan(B) = \frac{\sqrt{3}}{2}$ and the terminal side of the angle lies in quadrant I.						
sec (B) =						
#21) Find the exact value of each function using the unit circle. Do not use a calculator.						
$\cos\left(\frac{4}{3}\pi\right) =$						