PreCalculus

Cumulative Review 2

\#1) Find the domain of the given function. Use interval notation.

$$
\begin{gathered}
f(x)=\sqrt{8+x} \\
\text { RADICAND} \geq 0 \\
x+8 \geq 0 \\
x \geq-8 \\
{[-8, \infty)}
\end{gathered}
$$

\#3) Sketch the piecewise function and answer the questions.

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-2 & x \leq 0 \\
x-2 & x>0
\end{array}\right.
$$

a. $f(-2)=2$
b. $f(2)=0$
c. $f(0)=-2$
\#4) Confirm that f and g are inverses by showing that $f(g(x))=x$
$f(x)=4 x-7$ and $g(x)=\frac{x+7}{4}$

$$
\begin{aligned}
f(g(x)) & =4(g(x))-7 \\
& =4\left(\frac{x+7}{4}\right)-7 \\
& =x+7-7 \\
f(g(x)) & =x
\end{aligned}
$$

$$
\because f \varepsilon_{1}^{1} g \text { are inverse }
$$

PreCalculus

Cumulative Review 2

\#5) If $f(x)=-3 x+10$ and $g(x)=4 x^{3}+x^{2}+5$, find the following:

$$
\begin{aligned}
f(g(0)) & =-3(g(0))+10 \\
& =-3\left(4(0)^{3}+(0)^{2}+5\right)+10 \\
& =-3(5)+10 \\
& =-15+10
\end{aligned}
$$

$$
f(g(0))=-5
$$

$$
f(g(0))=-5 \quad O R
$$

$$
g(0)=4(0)^{3}+(0)^{2}+5
$$

$$
g(0)=5
$$

$$
f(g(0))=-3(5)+10
$$

$$
f(g(6))=-5
$$

$$
=-15+10
$$

\#6) Use the graph of the function to determine at least one zero, then find the exact values of all the zeros using the Factor Theorem.

$$
\begin{aligned}
& f(x)=10 x^{3}-31 x^{2}-76 x+160 \\
& \text { (4) } 10 \quad-31 \quad-76 \quad 160 \\
& f(x)=(x-4)\left(10 x^{2}+9 x-40\right) \\
& f(x)=(x-4)\left[\left(10 x^{2}+25 x\right)+(-16 x-40)\right] \\
& f(x)=(x-4)[5 x(2 x+5)+8(2 x+5)] \\
& 0=(x-4)(2 x+5)(5 x-8) \\
& \left.\left.\begin{array}{l}
0=x-4 \\
4=x
\end{array}\right\} \begin{array}{l}
0=2 x+5 \\
-5=3 x \\
-5 / 2=x
\end{array}\right\} \begin{array}{l}
0=5 x-8 \\
=5 x \\
8 / 5=x
\end{array}
\end{aligned}
$$

Answer the following questions about the given function.

$$
\begin{array}{r}
y=3|-5 x-10|-1 \\
y=3|-5(x+2)|-1
\end{array}
$$

\#7) Name Function: ABSOLUTE VALUE
\#8) Translation: Left 2
Down 1
\#9) Scale: Stretch vertically by 3 shrink horiantally by $\frac{1}{5}$
\#10) Reflection: Hor 1 ratal Reflection
\#11) Sketch Graph

PreCalculus

Cumulative Review 2

\#12) Solve.
$(x-2)(x-5) \frac{3 x}{x+2}=\frac{(-7-8 x)}{x^{2}-3 x-10}+\frac{1(x+2)(x-5)}{x-5}$
$3 x(x-5)=(-7-8 x)+(x+2)$
$3 x^{2}-15 x=-7 x-5$
$3 x^{2}-8 x+5=0$
$\left(3 x^{2}-3 x\right)+(-5 x+5)=0$
$3 x(x-1)-5(x-1)=0$
$(x-1)(3 x-5)=0$

| $x-1=0$ |
| :---: | :---: |
| $x=1$ |\(\quad \begin{gathered}3 x-5=0

3 x=5

x=5 / 3\end{gathered}\)
Use $f(x)=\frac{5 x}{x^{3}-12 x^{2}+35 x}$ to answer the following questions.
\#15) Vertical Asymptotes/Holes:
$f(x)=\frac{5 x}{x(x-7)(x-5)}$

$$
\left.\frac{\text { Holes (canal) }}{x=0} \quad \begin{array}{l}
\text { VA (Stars) } \\
x-7=0 \\
x=7
\end{array}\right\} \begin{aligned}
& x-5=0 \\
& x=5
\end{aligned}
$$

\therefore Hole $O x=0, \vee A O x=5,7$
\#16) x -intercepts:
$0=5 x$
$0=x$ (The is a hole © 0.50 No Xi rit)

$$
\therefore x=5 / 3,1
$$

\#13) Simplify.

$$
\text { ify. } \begin{aligned}
& \frac{(x-3)}{(\sqrt{x}-\sqrt{x-7})(\sqrt{x}+\sqrt{x-7})}(\sqrt{x}+\sqrt{x-7}) \\
= & \frac{(x-3)(\sqrt{x}+\sqrt{x-7})}{(\sqrt{x})^{2}-(\sqrt{x-7})^{2}} \\
= & \frac{(x-3)(\sqrt{x}+\sqrt{x-7})}{x-(x-7)} \\
= & \frac{(x-3)(\sqrt{x}+\sqrt{x-7})}{7}
\end{aligned}
$$

\#14) Evaluate

$$
\begin{aligned}
\log _{5} 125 & =\log _{5} 5^{3} \\
& =3
\end{aligned}
$$

\#17) Horizontal/Slant Asymptotes:
$n \stackrel{?}{=} d$
$0<2$, so HA $y=0$

Pre-Calculus
Page 3 of 4

PreCalculus

Cumulative Review 2

Use the information given to answer the questions on this page.

The formula for the path of a flying bullet is given: $h=-9.8 t^{2}+v t+s$ where $h=$ height of object after t seconds, $v=$ initial velocity in meters per second and $s=$ starting height in meters.

Bob shoots a gun straight up with an initial velocity of 500 meters per second and a starting height of 1 meters.
\#19) What is the equation that represents this situation?
$h=-9.8 t^{2}+500 t+1$
\#20) What does the y-intercept represent to Bob?

$$
\text { The } y \text {-intercept represents }
$$

the height of the bullet when Bob palls the trigger
\#21) What do the x-intercepts represent to Bob?
Te x-intercepts represent
how many seconds it takes
for the bullet to reach a hight of $Z a r b$, which is ground height.
\#22) How high is the bullet after 3 seconds?

$$
\begin{aligned}
h & =-9.8 t^{2}+500 t+1 \\
n(3) & =-9.8(3)^{2}+500(3)+1 \\
& =-9.8(9)+1500+1 \\
& =-88.2+1501 \\
h(3) & =1412.8 \text { metes }
\end{aligned}
$$

\#23) How long will it take for the bullet to hit the ground after it is fired?

$$
\begin{aligned}
& h=-9.8 t^{2}+500 t+1 \\
& 0=-9.8 t^{2}+500 t+1
\end{aligned}
$$

Doesnit factor. Ask calculator for "zero" of function.

```
t \approx 5 1 . 0 2 2 ~ s e c o u t s ~
```

\#24) What is the maximum height of the bullet?
use calc to find "mAx"

6378.551 meters

\#25) At what time (s) will the bullet be 700 meters in the air?

$$
\begin{aligned}
& y_{1}=-9.8 t^{2}+500 t+1 \\
& y_{2}=700 \\
& \text { Ask Calc for "intersect" } \\
& t=1.439 \text { serous and } 49.582 \text { serous }
\end{aligned}
$$

