PreCalculus
 Cumulative Review 2

HSF-ID.C. 8
\#1) Albert hits a fastball. The table below shows the height from the ground of the baseball over time. Graph the data with a friendly window. Record it below.

Time (sec)	0	0.25	0.5	0.75	1	1.25
Distance (ft)	2	20	34	44	50	52

a. Record a friendly window.

b. What type of regression model would be most appropriate?
c. Use regression to write the equation of the model.
d. Predict the height (to 3 decimals) of the baseball at 2.0 seconds.
e. Find the times (to 3 decimals) at which the ball will be 10 feet in the air.
f. When (to 3 decimals) will the ball hit the ground?
g. What does the y-intercept represent? (Sentence answer).

PreCalculus

Cumulative Review 2

\#5) If $f(x)=-3 x+10$ and $g(x)=4 x^{3}+x^{2}+5$, find the following:
$f(g(0))=$
\#6) Use the graph of the function to determine at least one zero, then find the exact values of all the zeros using the Factor Theorem.

$$
f(x)=10 x^{3}-31 x^{2}-76 x+160
$$

Answer the following questions about the given function.

$$
y=3|-5 x-10|-1
$$

\#7) Name Function:

\#8) Translation:

\#9) Scale:
\#10) Reflection:
\#11) Sketch Graph

PreCalculus

Cumulative Review 2

\#12) Solve.

$$
\frac{3 x}{x+2}=\frac{-7-8 x}{x^{2}-3 x-10}+\frac{1}{x-5}
$$

Use $f(x)=\frac{5 x}{x^{3}-12 x^{2}+35 x}$ to answer the following questions.
\#15) Vertical Asymptotes/Holes:
\#16) x-intercepts:
\#17) Horizontal/Slant Asymptotes:
\#13) Simplify.

$$
\frac{x-3}{\sqrt{x}-\sqrt{x-7}}
$$

\#14) Evaluate
$\log _{5} 125$
\#18) Graph it

PreCalculus

Cumulative Review 2

Use the information given to answer the questions on this page.

The formula for the path of a flying bullet is given: $h=-9.8 t^{2}+v t+s$ where $h=$ height of object after t seconds, $v=$ initial velocity in meters per second and $s=$ starting height in meters.

Bob shoots a gun straight up with an initial velocity of 500 meters per second and a starting height of 1 meters.
\#19) What is the equation that represents this situation?
\#20) What does the y-intercept represent to Bob?
\#21) What do the x-intercepts represent to Bob?
\#22) How high is the bullet after 3 seconds?
\#23) How long will it take for the bullet to hit the ground after it is fired?
\#24) What is the maximum height of the bullet?
\#25) At what time(s) will the bullet be 700 meters in the air?

