PreCalculus

Cumulative Review 2

\#1) Albert hits a fastball. The table below shows the height from the ground of the baseball over time. Graph the data with a friendly window. Record it below.

Time (sec)	0	0.25	0.5	0.75	1	1.25
Distance (ft)	2	20	34	44	50	52

a. Record a friendly window.

WINDOW
 Xmin= xmax=
 Xscl=
 Max=
 Yscl=
 Xres=1

b. What type of regression model would be most appropriate?
c. Use regression to write the equation of the model.
d. Predict the height (to 3 decimals) of the baseball at 2.0 seconds.
e. Find the times (to 3 decimals) at which the ball will be 10 feet in the air.
f. When (to 3 decimals) will the ball hit the ground?
g. What does the y-intercept represent? (Sentence answer).

PreCalculus

Cumulative Review 2

\#5) If $f(x)=-3 x+10$ and $g(x)=4 x^{3}+x^{2}+5$, find the following:
$f(g(0))=$
\#6) Use the graph of the function to determine at least one zero, then find the exact values of all the zeros using the Factor Theorem.

$$
f(x)=10 x^{3}-31 x^{2}-76 x+160
$$

Answer the following questions about the given function.

$$
y=3|-5 x-10|-1
$$

\#7) Name Function:
\#8) Translation:
\#9) Scale:
\#10) Reflection:
\#11) Sketch Graph

PreCalculus

Cumulative Review 2

\#12) Solve.

$$
\frac{3 x}{x+2}=\frac{-7-8 x}{x^{2}-3 x-10}+\frac{1}{x-5}
$$

Use $f(x)=\frac{5 x}{x^{3}-12 x^{2}+35 x}$ to answer the following questions.
\#15) Vertical Asymptotes/Holes:
\#16) x-intercepts:
\#17) Horizontal/Slant Asymptotes:
\#18) Graph it

PreCalculus

Cumulative Review 2

\#19) Find the reference angle for the angle -200°.

Reference angle $=$ \qquad
\#20) Suppose $\cos (B)=\frac{4}{5}$ and the terminal side of the angle lies in quadrant I.
$\tan (\mathrm{B})=$ \qquad
\#21) Find the exact value of each function using the unit circle. Do not use a calculator.
\#22) Alyssa was assigned the following problem to do in math class "A 15 -foot ladder is leaning on the outside of a house. If the angle formed by the ladder and the level ground is 80°, to the nearest hundredth how far up the side of the house does the ladder reach?"
After finishing the problem, Alyssa immediately knew her answer, 15 feet, was unreasonable. What makes her answer impossible? Include at least one mathematical principle in your explanation.

