Write the equation of the line in point slope form

1. contains the points $(3,4)$ and $(21,-15)$

Slope	point-slope	
$(3,4)$	$m=\frac{\Delta y}{\Delta x}$	$y-y_{1}=m\left(x-x_{1}\right)$
	$=\frac{(4)-(-15)}{(3)-(21)}$	
	$=\frac{19}{-18}$	$y-(4)=\frac{19}{-18}(x-(3))$

2. y-intercept $=4$ and contains the point $(14,27)$

Point	slope	point-slope
$(0,4)$	m $=\frac{\Delta y}{\Delta x}$ $=\frac{(27)-(4)}{(14)-(0)}$ $=\frac{23}{14}$ 	$Y-y_{1}=m\left(x-x_{1}\right)$ $y-(4)=\frac{23}{14}(x-(0))$

Write the equation of the line in slope intercept form

3 . contains the points $(-21,10)$ and $(13,-7)$

Point	Slope	point-slope
$(-21,16)$	$m=\frac{\Delta y}{\Delta x}$	$y-y_{1}=m\left(x-x_{1}\right)$
	$=\frac{(10)-(-7)}{(-21)-(13)}$	$y-(10)=-\frac{1}{2}(x-(-21))$
	$=\frac{17}{-34}$	$y-10=-\frac{1}{2} x-\frac{71}{2}$
$m=\frac{1}{-2}$	$y=-\frac{1}{2} x-\frac{21}{2}+\frac{20}{2}$	

Write the equation of the line in slope intercept that is parallel to $y=3 x+5$ and contains the point $(12,-18)$ 5.

Point	Slope	Point-slope
$(12,-18)$	$m=3$ $1 / m=3$	$y-y_{1}=m\left(x-x_{1}\right)$
		$y-(-18)=3(x-(17))$
	$y+18=3 x-36$	
	$y=3 x-54$	

Graph the following

Enter the data in your calculator and create a scatterplot with a "friendly" window.

10. Every musical note has an associated frequency measured in hertz (Hz), or vibrations per second. The table shows the approximate frequencies of the notes in the octave from middle C up to the next C on a piano.

Note Name	C	C\#	D	D\#	E	F	F\#	G	G\#	A	A\#	B	Next C
\# above C	0	1	2	3	4	5	6	7	8	9	10	11	12
Frequency (Hz)	262	277	294	311	330	349	370	392	415	440	466	494	523

WINDOW

$x \min =-5 \quad y \min =225$
$x \max =20 \quad y \max =600$
b. Use regression and write the equation of your model. Round to nearest thousandth.
$x s c l=1 \quad y s c l=25$
c. Use the model to predict note 24 .

$$
962.285 \mathrm{~Hz}
$$

d. Find the note with a frequency of 600 Hz . Hint graph $y=600$. This makes a straight line at 600 . The point of intersection is your solution!!!

$$
\text { NOTE } 14.527
$$

11. Bob decides to find out how much soap a person uses in a day. Below is the data that he collected.

\# of days used	0	1	4	5	6	7	8	9	11	12	17	19	20	21	22
Weight (grams)	124	121	103	96	90	84	78	71	58	50	27	16	12	8	6

window

$x \min =-5 \quad y \min =0$ $x \max =25 y \max =150$
a. Find a model that fits the data linear, quadratic, exponential, absolute value, etc...).
$x s c l=1 \quad y s c l=25$
b. Use the model to predict when the soap will be gone.

$$
\text { Day } 22.089
$$

c. Use the model to predict the weight after 14.2 days.

$$
43.979 \text { grams }
$$

Review Skillz

Write the equation of the quadratic function in vertex form, $y=a(x-h)^{2}+k$. See example for a refresher!

