PRACTICE

Enter the data in your calculator and create a scatterplot with a "friendly" window.

10. Every musical note has an associated frequency measured in hertz(Hz), or vibrations per second. The table shows the approximate frequencies of the notes in the octave from middle C up to the next C on a piano.

Note Name	С	C#	D	D#	E	F	F#	G	G#	А	A#	В	Next C
# above C	0	1	2	3	4	5	6	7	8	9	10	11	12
Frequency(Hz)	262	277	294	311	330	349	370	392	415	440	466	494	523

WINDOW a. Find a model that fits the data (linear quadratic) exponential, abs. value, etc..).

xmin=-5 ymin=225 b.

xmax= **>b** ymax= **60**

b. Use regression and write the equation of your model. Round to nearest thousandth. $v = 0.626 x^2 + 14.132 x + 262.604$

xscl= | vscl= >5

c. Use the model to predict note 24. 962. 285 Hz

- d. Find the note with a frequency of 600 Hz. Hint graph y = 600. This makes a straight line at 600. The point of intersection is your solution!!! $N \sigma T E 14.5 = 7$
- 11. Bob decides to find out how much soap a person uses in a day. Below is the data that he collected.

# of days used	0	1	4	5	6	7	8	9	11	12	17	19	20	21	22
Weight(grams)	124	121	103	96	90	84	78	71	58	50	27	16	12	8	6

WINDOW	v	a.	Find a model that fits the data (linear, quadratic, exponential, absolute value, etc).
xmin= ~5	ymin= 🔿	e.	Use regression and write the equation of your model. Round to nearest thousandth.
xmax= 25	ymax= S O		$y = -5.575 \times + 123.141$
xscl=	yscl= 25	b.	Use the model to predict when the soap will be gone. 220%

c. Use the model to predict the weight after 14.2 days.

L12,979 grams

