2.4 Application and Extension

1. Mr. Sullivan decides to start raising bunnies. On the right is the population of these bunny rabbits over a 2-year period.
 a. Graph the scatterplot with a “friendly” window and record it here.
 b. Find a logistic regression model for the data. (Be patient, it will take the calculator a little extra time to calculate this.) Write out the logistic model below. Round all values to the nearest thousandth (three decimal places).

 \[
 f(x) = \frac{57.712}{1 + 0.391 e^{-0.186x}}
 \]
 c. Find the limit of that model as time approaches infinity. Write it below using limit notation.
 \[
 \lim_{x \to \infty} f(x) = 57.712 \text{ hundred bunnies}
 \]
 d. How does your answer from part c relate to the problem?
 The population of rabbits will grow to about 57,712 bunnies no matter how long he raises the bunnies.
 e. Provide a reasonable explanation why a population would have a growth limit instead of growing indefinitely like an exponential model.
 A population would have a growth limit because of limited resources (like food) needed to keep the population alive.

For 2 – 3, sketch a graph of a function \(y = f(x) \) that satisfies the stated conditions.

2. Sketch (freehand) a graph of a function \(f \) that satisfies all of the following conditions. Include any asymptotes.
 a. \(\lim_{x \to 0} f(x) = \infty \)
 b. \(\lim_{x \to \infty} f(x) = \infty \)
 c. \(\lim_{x \to \infty} f(x) = 2 \)

3. Sketch (freehand) a graph of a function \(f \) that satisfies all of the following conditions. Include any asymptotes.
 a. \(\lim_{x \to \infty} f(x) = \infty \)
 b. \(\lim_{x \to -3} f(x) = \infty \)
 c. \(\lim_{x \to -3} f(x) = -\infty \)
 d. \(\lim_{x \to \infty} f(x) = -1 \)