3.2 Application and Extension

For 1-2, the extrema are listed for a function f along with the restricted domain. Find the absolute maximum value and absolute minimum value on the interval. DON'T USE THE GRAPH!

1. $f(x) = 0.7x^3 - 3x^2 + x; -1 \leq x \leq 4$

 Extrema at:
 - $f(-1) = -4.7$
 - $f(4) = 0.8$ ABS MAX
 - $f(0.18) = 0.087$
 - $f(2.679) = -5.393$ ABS MIN

2. $f(x) = -21x^4 - 9x^3 + 50x^2 + 13x; -2 \leq x \leq 1.2$

 Extrema at:
 - $f(-2) = -90$ ABS MIN
 - $f(1.2) = 38.502$
 - $f(-1.204) = 28.408$
 - $f(0.127) = -0.832$
 - $f(1.01) = 33.01$ ABS MAX

3. A rectangle has its base on the x-axis and its two upper corners on the parabola $y = 12 - x^2$.

 a. Draw this scenario on the coordinate plane to the right, and draw a possible rectangle.

 b. Label the base and height of your rectangle in terms of x.

 c. Find the function $A(x)$ that represents the area of the rectangle.

 $A(x) = bh$
 $= 2x(12 - x^2)$
 $A(x) = 24x - 2x^3$

 d. What is the largest possible area of this rectangle?

 (Hint: Use a calculator to graph and find the maximum!)

 $A(x) = 32$ un^2

 e. At what x-value should the rectangle be drawn for the largest area?

 $x = 2$ units

4. Sketch (freehand) a graph of a function g with domain all real numbers that satisfies all of the following conditions:

 ✓ a. There are no breaks in the graph (it is continuous).
 ✓ b. g is decreasing on $(-\infty, -3)$ and on $(4, \infty)$
 ✓ c. g is increasing on $(-1, 4)$
 ✓ d. $g(4) > g(-7)$
 ✓ e. $g(x) < 0$ on $(-4, 0)$
5. Mr. Sullivan has hired you to design a window in front of his house. His specifications are that it is to be a rectangular shape with a semi-circle on top (see figure) and the perimeter of the window is 288 inches. He wants you to create a window with the largest possible area that fits those specifications.

a. Using \(r \) as the radius of the semi-circle, label the top edge of the semi-circle in terms of \(r \). (Hint: What is the circumference of a circle?)

\[C = 2\pi r, \text{ then } \frac{1}{2} C = \pi r \]

b. Label the bottom of the window in terms of \(r \).

c. Label the height of the rectangular portion as \(H \).

d. Find \(H \) in terms of \(r \).

\[
\text{Perimeter} = H + H + 2r + \pi r = 288 \\
2r + \pi r = 288 - 2r - \pi r \\
144 - \pi r = H
\]

e. Label the area of the semi-circle \(a_1(r) \). Find an equation for \(a_1(r) \).

\[
a_1(r) = \frac{1}{2} A_0 = \frac{1}{2} \pi r^2
\]

f. Label the area of the rectangle \(a_2(r) \). Find an equation for \(a_2(r) \).

\[
a_2(r) = b \cdot h = 2r \cdot H = 2r \left(144 - r - \frac{\pi r}{2} \right)
\]

g. Find \(A(r) \), the total area of the window.

\[
A(r) = a_1(r) + a_2(r) = \left(\frac{1}{2} \pi r^2 \right) + \left(288r - 2r^2 - \pi r^2 \right)
\]

\[
A(r) = -2r^2 + 288r - \frac{1}{2} \pi r^2
\]

h. What is the largest area of the window? (3 decimal places and use correct units)

\[
\text{\(\max A(r) \approx 5807.108 \text{ in}^2 \)}
\]

i. What is the width of the bottom of the window to create this large area? (3 decimal places and use correct units)

\[
r = 40.327138 \\
2r = 80.654 \text{ inches}
\]