3.2 Extrema & Function Analysis

Absolute max/min – absolutely the highest or lowest point.

Absolute max/min – a point on the function that is higher or lower than all the points immediately surrounding it.

Finding a max/min means finding the y-value of the point. The x-value helps you with location of the point, but it is not the max/min value.

1. Find the coordinate points of the extrema of each function and classify its type.

 \[f(x) = 0.05x^6 - 0.25x^5 - 0.25x^4 + 2.25x^3 - 5.4x^2 + 1 \]

 Local Min: @ (-0.583, 41.337)
 Local Max: @ (0, 1)
 Abs Min: @ (4.168, -57.67)

 What is the minimum value of \(f \)? \(-57.67\)

2. Closed Endpoint:

3. Open Endpoint:

3. Jump Discontinuity
3.2 Extrema & Function Analysis

 \[f(x) = -100x^3 - 45x^2 + 10x + 5000 \]

Function Analysis – putting it all together!

5. \[f(x) = 0.5(x^2 + 1)\sqrt{4-x} \]
 - **Domain:** \([4, \infty)\)
 - **Vertical Asymptotes:** (Nonremovable) \[\text{NONE} \]
 - **Holes:** (Removable) \[\text{NONE} \]
 - **Absolute max/min value:** \[\text{NONE} \]
 - **Local max/min value(s) that are NOT absolute:**
 - Local MIN of 0.996
 - Local MAX of 5.035
 - **Increasing:** \((0.064, 3.136)\)
 - **Decreasing:** \((-\infty, 0.064) \cup (3.136, \infty)\)
 - **Left End-Behavior:** \(\lim_{x \to -\infty} f(x) = \infty \)
 - **Right End-Behavior:** \(\lim_{x \to \infty} f(x) = -\infty \)

Sketch a graph:

Skills Review: Solve or evaluate.

1. \[\sqrt{-125} = 5i \]
2. \[x^2 + 1 = 73 \]
 \[x^2 = 72 \]
 \[x = \pm \sqrt{72} \]
 \[x = \pm 6\sqrt{2} \]
3. \[-9(x + 7)^2 = -144 \]
 \[(x + 7)^2 = 16 \]
 \[x + 7 = \pm 4 \]
 \[x = -1, -3 \]
4. \[5(x - 2)^2 = -60 \]
 \[(x - 2)^2 = -12 \]
 \[x - 2 = \pm \sqrt{-12} \]
 \[x = 2 \pm 2i\sqrt{3} \]