Determine algebraically whether each function is even, odd, or neither. SHOW WORK!

1. $y=x^{3}+x$

$$
\begin{aligned}
& \text { ODD }(-x,-y) \\
&-y=(-x)^{3}+(-x) \\
&-y=-x^{3}-x \\
& y=x^{3}+x
\end{aligned}
$$

3. $y=x^{4}+3 x^{2}$

Even $(-x, y)$

$$
y=(-x)^{4}+3(-x)^{2}
$$

$$
y=x^{4}+3 x^{2}
$$

2. $y=x^{2}+x-3$

$$
\begin{aligned}
& \operatorname{ODD}(-x,-y) \\
& -y=(-x)^{2}+(-x)-3 \\
& -y=x^{2}-x-3 \\
& y=-x^{2}+x+3
\end{aligned}
$$

$\operatorname{Even}(-x, y)$

$$
\begin{aligned}
& y=(-x)^{2}+(-x)-3 \\
& y=x^{2}-x-3
\end{aligned}
$$

4. $g(x)=\frac{4+x^{2}}{1+x^{4}}$

$$
\frac{E \operatorname{ven}(-x, y)}{g(-x)=\frac{4+(-x)^{2}}{1+(-x)^{9}}} \begin{aligned}
& g(-x)=\frac{4+x^{2}}{1+x^{4}}
\end{aligned}
$$

6. $f(x)=\frac{x^{5}-2 x^{3}-x}{x^{2}+1}$

$$
\begin{aligned}
& \text { ODD }(-x,-y) \\
&-f(-x)=\frac{(-x)^{5}-2(-x)^{3}-(-x)}{(-x)^{2}+1} \\
&-f(-x)=\frac{-x^{5}+2 x^{3}+x}{x^{2}+1} \\
& f(-x)=\frac{x^{5}-2 x^{3}-x}{x^{2}+1}
\end{aligned}
$$

Use the graph to determine if the function is even, odd, or neither.
7.

9.

Use the table to determine if the function is even, odd, or neither.
10.

\boldsymbol{x}	\boldsymbol{y}
-4	-128
-5	-250
-6	-432
4	128
5	250
6	432

11.

x	y
-3	-11
-2	3
-1	5
1	-3
2	-1
3	13

12.

\boldsymbol{x}	\boldsymbol{y}
-3	-5
-2	0
-1	3
1	3
2	0
3	-5

Given the $f(x)$ is even, fill in the table.
13.

x	$f(x)$
-5	10.5
7	23.5
-9	38.5
-7	22.5
5	10.5
9	38.5

Given that the $f(x)$ is continuous on $(-5,5)$ and odd, draw the $\operatorname{graph} f(x)$ from $(0,5)$
14.

REVIEW SKILLS

Use the quadratic formula to solve. Express your solutions) in exact and decimal form.

