4.2 Even and Odd Functions

PRACTICE

Determine algebraically whether each function is even, odd, or neither. SHOW WORK!	
1. $y = x^{3} + x$ ODD $(-x, -y)$ $-y = (-x)^{3} + (-x)$ $-y = -x^{3} - x$ $y = x^{3} + x$	2. $y = x^{2} + x - 3$ ODD $(-x, -y)$ $-y = (-x)^{2} + (-x) - 3$ $-y = x^{2} - x - 3$ $y = -x^{2} + x + 3$ $y = -x^{2} + x + 3$ $y = x^{2} - x - 3$ $y = x^{2} - x - 3$ $y = x^{2} - x - 3$
3. $y = x^{4} + 3x^{2}$ Even(-x, v) $y = (-x)^{4} + 3(-x)^{2}$ $y = x^{4} + 3x^{2}$	4. $g(x) = \frac{4 + x^2}{1 + x^4}$ $f(x) = \frac{4 + (-x)^2}{7 + (-x)^4}$ $g(-x) = \frac{4 + (-x)^2}{7 + (-x)^4}$ $g(-x) = \frac{4 + x^2}{7 + x^4}$
5. $h(x) = \frac{x}{1 + x^2}$ CDD $(-X, -Y)$ $-h(-x) = \frac{-X}{1 + (-x)^3}$ $-h(-x) = \frac{-X}{1 + x^2}$ $h(-x) = \frac{X}{1 + x^2}$	6. $f(x) = \frac{x^{5} - 2x^{3} - x}{x^{2} + 1}$ $-f(-x) = \frac{(-x)^{5} - 2(-x)^{3} - (-x)}{(-x)^{2} + 1}$ $-f(-x) = \frac{-x^{5} + 2x^{3} + x}{x^{3} + 1}$ $f(-x) = \frac{x^{5} - 2x^{3} - x}{x^{2} + 1}$

