

Write your questions here!

Composition of Functions

$$
f \circ g=(f \circ g)(x)=f(g(x)) \quad g \circ f=(g \circ f)(x)=g(f(x))
$$

Given: $f(x)=x^{2}-1$ and $g(x)=\sqrt{x}$
Find:

$$
\begin{aligned}
f(g(2)) & =(g(2))^{2}-1 & (g \circ f)(-4) & =\sqrt{f(-4)} \\
& =(\sqrt{2})^{2} \cdot 1 & & =\sqrt{(-4)^{2}-1} \\
& =2-1 & & =\sqrt{16-1} \\
& =1 & & =\sqrt{15}
\end{aligned}
$$

Given: $f(x)=\frac{3}{x^{2}-5} \quad$ and $\quad g(x)=\sqrt{x-2}$

$$
\begin{aligned}
f \circ g & =f(g(x)) \\
& =(g)^{2}-1 \\
& =(\sqrt{x})^{2}-1 \\
& =x^{2}-1
\end{aligned}
$$

Domain
$g(x)=\sqrt{x-2}$
$x-2 \geq 0$
$x \geq 2$

$$
\begin{array}{r}
(f \circ g)(x)=\frac{3}{x 7} \\
x-7 \neq 0 \\
x \neq 7
\end{array}
$$

$$
\begin{aligned}
& \text { Find: } \\
& f(g(2))=\frac{3}{(g(2))^{2}-5} \quad(f \circ g)(x)=\frac{3}{g^{2-5}} \quad(f \circ g)(0)=\frac{3}{(g(0))^{2}-5} \\
& =\frac{3}{(\sqrt{(22-2})^{2}-5} \\
& =\frac{3}{(\sqrt{6})^{2}-5} \\
& =\frac{3}{-5} \quad \begin{array}{l}
(f \circ g)(x)=\frac{3}{x-7},[2,7) u(7, \infty) \\
\text { Decompositiollo Functions }
\end{array} \\
& =\frac{3}{(\sqrt{0-2})^{2}-5} \\
& =\frac{3}{x-2-5} \\
& =\frac{3}{(\sqrt{-2})^{2}-5} \\
& =d_{n e}{ }_{\text {imaginary }} \\
& h(x)=f(g(x)) \\
& h(x)=\sqrt{x^{3}+1} \\
& h(x)=\frac{1}{x^{2}+1} \\
& f(x)=\frac{1}{x} \\
& g(x)=x^{3}+1 \\
& g(x)=x^{2}+1
\end{aligned}
$$

Operations with Functions

ADD	$f+g$	$(f+g)(x)$	$(f+g)(1)$
SUBTRACT	$f-g$	$f-g)(x)$	$(f-g)(2)$
MULTIPLY	$f \cdot g$	$(f \cdot g)(x)$	$(f \cdot g)(-3)$
DIVIDE	f	$\left(\frac{f}{g}\right)(x)$	$\left(\frac{f}{g}\right)(5)$

Operations with Functions
Given: $f(x)=2 x^{2}-1$ and $g(x)=3-5 x$

$$
\begin{aligned}
& \text { Find: } \\
& f+g=\left(2 x^{2}-1\right)+(3-5 x) \text { Domain }(-\infty, \infty) \mid f \cdot g=\left(2 x^{2}-1\right)(3-5 x) \text { Domain }(-\infty, \infty) \\
& =2 x^{2}-5 x+2 \text { 权 } \\
& =6 x^{2}-10 x^{3}+5 x-3 \\
& =-10 x^{3}+6 x^{2}+5 x-3 \\
& \begin{array}{c|l}
(f-g)(x)= \\
=\left(2 x^{2}-1\right)-(3-5 x)
\end{array} \begin{array}{l}
\text { Domain }(-\infty, \infty)
\end{array} \quad \frac{f}{g}=\frac{2 x^{2}-1}{3-5 x} \quad \text { Domain } \mathbb{R}, x \neq \frac{3}{5} \\
& =2 x^{2}+5 x-2 \\
& \begin{array}{r}
\operatorname{Denamz0} \\
3-5 \times 70 \\
3 \geq 5 x \\
37 \\
\frac{3}{5} \neq x .
\end{array}
\end{aligned}
$$

Given: $f(x)=\sqrt{x}$ and
Find: D. $x \geq 0$

$$
\begin{aligned}
(f+g)(2) & =f(2)+g(2) \\
& =\sqrt{2}+\sqrt{5-(2)} \\
& =\sqrt{2}+\sqrt{3}
\end{aligned}
$$

$$
\frac{f}{g}=\frac{\sqrt{x}}{\sqrt{5-x}}
$$

Domain $5 \geq x$
$\times \leq 5$

$$
\begin{gathered}
\begin{array}{c}
\text { Denom } \neq 0 \\
\sqrt{5-x} \neq 0 \\
5-x \neq 0 \\
5 \neq x
\end{array} \\
\frac{B A D \geq 0}{x \geq 0} \\
\hline
\end{gathered}
$$

Graphically

SUMMARY:

Now,

x	$f+g$
-2	-4
-1	1
0	4
1	2
2	-1
3	-6

$$
\begin{gathered}
(f+g)(2)=0+(-1)=-1 \\
(f-g)(-1)=3-(-2)=5 \\
(g \cdot f)(0)=4 \cdot(0)=0 \\
\left(\frac{f}{g}\right)(-2)=\frac{0}{-4}=0 \\
(f \circ g)(3)=f(-1)=3 \\
f+g \quad(\text { graph }) \\
\text { use } \\
\text { table }
\end{gathered}
$$

