
4.3 NOTES APPLICATION

3. Given f(x) = 3x and g(x) = x + 1 and $h(x) = 3x - x^3$ find the following.

a. $(f+g)(2) = \frac{f}{(2)} + \frac{g}{(2)}$ = 3(2) + (2) + 1 = 6 + 3 = 9c. $(f \cdot g)(2) = \frac{f}{(2)} \cdot \frac{g}{(2)}$ $= 6 \cdot 3$ $(f \cdot g)(2) = \frac{f}{(2)} \cdot \frac{g}{(2)}$ $= 6 \cdot 3$ $(f \cdot g)(2) = \frac{f}{(2)} \cdot \frac{g}{(2)}$ $= 6 \cdot 3$ $(f \cdot g)(2) = \frac{f}{(2)} \cdot \frac{g}{(2)}$ $= \frac{2 - (2)^3}{(2) + 1}$ $= \frac{2 - 8}{3}$

= <u>`</u>

- - J

4. Suppose $f(x) = x^2 + bx - 7$ and f(3) = 5. Find b. $5 = (3)^2 + b(3) - 7$ 5 = 9 + 3b - 7 5 = 2 + 3b 3 = 3b1 = b

5. Given
$$f(x) = \Im x - b$$
 while $g(x) = \Im bx$. If $f(g(1)) = \Im S$ what is $g(f(1))$?

$$\begin{cases} (g(1)) = \Im (g(1)) - b \\ \Im (f(1)) = \Im (S) (f(1)) \\ \Im (f(1)) = \Im (S) (f(1)) \\ \Im (f(1)) = \Im (S) (f(1)) \\ \Im (f(1)) = \Im (S) \\ \Im (f(1)) = \Im (S)$$

6. Given that f(x) = cx - 8 and g(x) = cx + 5 are both defined on the set of all real numbers and c is a constant, what is the value of c if $(f \circ g)(x) = (g \circ f)(x)$ for all values of x?

$$f(d(x)) = c_{x} + 2c_{x}$$

$$= c(c_{x}+2)-8$$

$$d(f(x)) = c(d)-8$$

$$d(f(x)) = c(d)+2$$

$$d(f(x)) = c(d)+2$$

$$c^{2} \times +5c - 8 = c^{2} \times -8c + 5$$

 $5c - 8 = -8c + 5$
 $13c = 13$
 $c = 1$

7. Use the two tables given to fill in the incomplete table.

x	f(x)		
-2	3		
-1	١		
0	2		
1	0		
2	4		
3	, U		
4	л С		
5	-1		

x	$\boldsymbol{g}(\boldsymbol{x})$		
-2	1		
-1	5		
0	2		
1	'n		
2	S		
3	-1		
4	ч		
5	0		

x	(f+g)(x)
-2	4
-1	ي. ف
0	7
1	ູ່
2	7
3	-3
4	6
5	-

8. Fill in the following table, given that $h(x) = (f \circ g)(x)$

X	g(x)	f(x)	h(x)
-3	0	Ø	20
-2	M	5	8
-1	റ	ר ר	
0	, U	20	S
1	1	٩	9
2	-	11	7
3	3	31	31