

4.3 Operations with Functions APP

4.3 Operations with Functions

APPLICATION

(2)= -<u>4</u>

3. Given f(x) = 2x and g(x) = x + 4 and $h(x) = 5 - x^3$ find the following.

a.
$$(f+g)(2) = \frac{f(2)+g(2)}{g(2)}$$
 b. $h(g(2)) = \frac{f(2)}{g(2)}$ c. $(f \cdot g)(2) = \frac{f(2)}{g(2)}$ d. $\left(\frac{h}{g}\right)(2) = \frac{h(2)}{g(2)}$
 $= \frac{f(2)+g(2)+g(2)}{g(2)+g(2)}$ $= \frac{f(2)}{g(2)+g(2)}$ $= \frac{f(2)}{g(2)+g(2)}$ $= \frac{f(2)}{g(2)+g(2)}$
 $= \frac{f(2)+g(2)}{g(2)+g(2)+g(2)}$ $= \frac{f(2)}{g(2)+g(2)}$ $= \frac{$

4. Suppose $f(x) = x^2 + bx - 3$ and f(2) = -9. Find *b*. $-q = (2)^{2} + b(2) - 3$ -9=4 +26-3 - 9=1+7b ルニント

- 5. Given f(x) = 5x 2b while g(x) = 4bx. If f(g(1)) = 36 what is g(f(1))? f(g(1)) = 5(g(1)) - 2b 36 = 5(4b(1)) - 2b 36 = 5(4b(1)) - 2b 36 = 5(4b) - 2b 36 = 20b - 2b 36 = 20b - 2b 36 = 18b 2 = b g(f(1)) = 4b(f(1)) = 4(2)(5(1) - 2(2)) = 8(5 - 4)= 8(1)
- 6. Given that f(x) = cx 3 and g(x) = cx + 5 are both defined on the set of all real numbers and c is a constant, what is the value of c if $(f \circ g)(x) = (g \circ f)(x)$ for all values of x?

$$f(g(x)) = g(f(x))$$

$$c \cdot g - 3 = c \cdot f + 5$$

$$c(cx + 5) - 3 = c(cx - 3) + 5$$

$$c^{2}x + 5c - 3 = c^{3}x - 3c + 5$$

$$8 c = 8$$

$$c = 1$$

7. Use the two tables given to fill in the incomplete table.

x	f(x)	
-2	1	
-1	-2	
0	4	
1	5	
2	-1	
3	0	
4	3	
5	2	

x	$\boldsymbol{g}(\boldsymbol{x})$	
-2	-1	
-1	0	
0	3	
1	2	
2	-2	
3	4	
4	5	
5	1	
	-	

x	(f+g)(x)
-2	0
-1	1 1
0	
1	7
2	-3
3	4
4	8
5	Z

8. Fill in the following table, given that $h(x) = (f \circ g)(x)$

X	g(x)	f(x)	h(x)
-3	0	7	Μ
-2	-2	-4	-4
-1	-3	-1	7
0	1	3	\bigcirc
1	2	0	4
2	2	4	4
3	0	9	3