Use the quadratic formula to solve. Express your solutions) in exact and decimal form.
4.4 Inverse Functions

1. Graph f and verify that f is one-to-one function. Find f^{-1} and add the graph of f^{-1} and the line $y=x$ to the graph f. State the domain and range of f and the domain and range of f^{-1}.

$$
f(x)=\sqrt{X+3}-1
$$

$$
x=\sqrt{y+3}-1
$$

$$
x+1=\sqrt{y+3}
$$

$$
(x+1)^{2}=y+3
$$

$$
(x+1)^{2}-3=y
$$

$$
f^{-1}(x)=(x+1)^{2}-3, x \geq-1
$$

D: $[-3, \infty)$
D: $[-1, \infty)$
R: $[-1, \infty)$
R: $[-3, \infty)$

2. The graph shows $f(x)$. On the same graph, sketch $f^{-1}(x)$.

$$
\begin{aligned}
& \text { 1. } 2 b^{2}-19=-b \quad 2 b^{2}+b-19=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(1) \pm \sqrt{(1)^{2}-4(2)(-19)}}{2(1)} \\
& =\frac{-1 \pm \sqrt{1+152}}{2} \\
& =\frac{-1 \pm \sqrt{153}}{2} \\
& x=\frac{-1 \pm 3 \sqrt{n}}{2}(\xi X A C T) \\
& x \approx-3.342,7.842 \text { (decimal) } \\
& \text { 2. } r^{2}=2 r-8 \\
& r^{2}-2 r+8=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-8)}}{2(1)} \\
& x=\frac{2 \pm \sqrt{4+32}}{2} \\
& x=\frac{2 \pm \sqrt{36}}{2} \\
& x=\frac{2 \pm 6}{2} \\
& x=\frac{2(1 \pm 3)}{2} \\
& x=1 \pm 3
\end{aligned}
$$

3. Graph $f(x)=\frac{x-6}{x+6}$ in Y_{1} of the graphing calculator with a
Y_{2} of the graphing calculator. Graph $f(x)=x$ in Y_{3} and us it to answer the following:
a. Explain why the functions are inverses according to your graph.

The graphs are symmetric to each other
b. Fill in the table and explain why they are inverses according to your table.

Points from

$$
\begin{aligned}
& f(x) \text { like }(6,0) \text {, } \\
& (-18,2) \text { are on }
\end{aligned}
$$

$$
f^{-1}(x) \text { in the form }
$$

of $(0,6)$ and $(2,-18)$.

\boldsymbol{x}	$f(x)$	$f^{-1}(x)$
0	-1	6
6	0	.8 .4
2	-.5	-18
-18	2	-5.368
-7.5	9	-4.588
9	.2	-7.5

4. Complete the table of values given that f and g are inverse functions of each other.

$$
\begin{aligned}
& \frac{(x, f(x))}{(0,-2)} \rightarrow \frac{(x, g(x))}{(-2,0)} \\
& (1,5) \rightarrow(5,1) \\
& (5,0) \longrightarrow(2,5) \\
& (4,0) \longleftrightarrow(0,4) \\
& (3,1) \longleftrightarrow(1,3) \\
& (2,3) \longmapsto(3,2) \\
& 1,4)
\end{aligned}
$$

\boldsymbol{x}	$f(x)$	$g(x)$
0	-2	4
1	5	3
2	3	5
3	1	2
4	0	7
5	2	1

