Write your questions and thoughts here!

Name:

Moore's Law states that processor speeds, or overall processing power for computers will double about every 18 months. Likewise, the cost to produce a comparable computer will be cut in half.

What does this mean? To simplify the mathematics, let's assume it takes 2 yrs to double/half instead of 18 months.

Example 1: In 1988, the number of transistors in the Intel 386 SX microprocessor was 275,000. What was the approximate transistor count of the Pentium II Intel microprocessor in 1998?

Year	Transistors	Number of Transistors Over Time								
1988	275.000	ų	م 6000000 [.]							
1990	550,000	Isistor	5000000							
1992	1,110,000	La.	- 4000000					/		
1994	2,20,000	her o) j 3000000							
1996	4,400,000		2000000				/			
1998	<i>x</i> , <i>x</i> 00,00		1000000							
			19	88 19	990 1	992 19	<u> </u> 994 19	96 19	998	2000
is is called exponential GROWTH.			Year							

This is called exponential GROWTH.

(The actual number of transistors in in a Pentium II chip in 1998 was 7,500,000!!)

Example 2: A personal computer that cost \$3,000 in 2002 would cost about how much now?

Year	<i>Cost (\$)</i>	
2002	3000	
2004	1500	
2006	750	
2008	375	
2010	187.50	
2012	93.75	
2014	46.88	

04641

This is called Exponential DECAY.

An *Exponential Function* is of the form:

 $y = a(b)^x$ Initial Value Growth/decay factor h>1 Condition 1: $a \neq 0$ Condition 2: The base (b) is a positive number other than 1.

~

