PRACTICE 7.1

Solve each equation for the unknown variable.

1.
$$(27)^{3x} = 9$$

$$3_{\text{ex}} = 3_{\text{s}}$$

4.
$$(5^{2x})^{(x+2)} = 1$$

$$5^{2} + 4x = 5^{2}$$

$$5^{2} + 4x = 0$$

$$5^{2} + 4x = 0$$

$$5^{2} + 4x = 5^{2}$$

X = -2,0

$$2. 25^{-k} \cdot 5^3 = 625$$

$$(5^2)^{-N}$$
 $5^3 = 5^4$
 5^{-2N} $5^3 = 5^4$
 $5^{-2N+3} = 5^4$
 $-2N+3 = 4$

$$5. \qquad \frac{(7)^{4x^2}}{7^8} = 7$$

$$7^{4x^2-8} = 7'$$

x = = = 3/3

$$3. \qquad \left(\frac{1}{3}\right)^{-3x+3} = 27^x$$

$$\left(3_{-1}\right)_{-3^{N+3}} = \left(3_{-3}\right)_{\kappa}$$

$$z^{3x-3}=3^{3x}$$

$$32^{-3a-2} = 64^{a-1}$$

7. The website Bankrate.com publishes a weekly list of the top savings deposit yields. In the category of 3-year certificates of deposit, the following were listed. Which bank should you chose for a \$5000 investment? Decide by completing the table. The Brust Price Bank is the best.

				11 . C. W.	1
Bank	APR	Compounded	Initial Investment	Value after 3 Yrs	
The Brust Price Bank	3.12%	Quarterly N=4	\$5000	85488.61	4
\$ully.com	3.00% .03	Daily _{n=365}	\$5000	\$5470.85	-
Kelly-Green\$ Bank	2.96% .	Monthly Maio	\$5000	\$5463.71	<
BeanCounters.com	2.75%	75 Continuously	\$5000	55429.99	

Find each missing value in the table. 8.

Initial Value	% Change	Growth or Decay?	Equation		
1.25	Loss of 25%	Decay	$y = 1.25(1 - 0.25)^x$		
1.25	GAIN 258	GROWTH	$y = 1.25(1.25)^x$		
0.75	GAIN 258	GROWTH	$y = 0.75(1.25)^x$		
0.75	LOSS 25%	DECAY	$y = 0.75(0.75)^x$		
3	GAIN 1006	GROWTH	$y = 3(2)^x$		
-5	Loss of 94%	Decay	V= -5(.06)X		
2.45	Gain of 415%	Growth	v= 2.45(5.15)X		
a	Loss of r%	Decay	y=α(1-,01r)×		

7.1 - Exponential Functions

9. The equation $y = 25,000(1+0.04)^x$ models the salary of an employee who receives an annual raise.

Give the meaning of each number and variable in this equation.

A ball is dropped from a height of 12 feet and is allowed to bounce over and over. The height of each bounce is modeled in the exponential DECAY model below.

Bounce	0	1	2	3	4	 8	 100
Height (ft)	12	7.8	5.07	3.2955	2.142075	 ???	 ???

$$Y = 12(\frac{7.8}{12})^{\times}$$

 $Y = 12(.65)^{\times}$

10. Function:
$$y = 12(.05)^{\times}$$
 11. 8th Bounce: 0.3824 ft 12. 100^{th} Bounce $2.3 \times 10^{-18} \text{ ft}$

$$y = 12(.05)^{8}$$

$$y = 12(.05)^{100}$$

For 13-15, sketch the graph of each exponential function by doing the following: Sketch the asymptote, label at least two distinct coordinate points on each graph, and write the domain and range of each function.

Growth or Decay? 14.
$$y = -4\left(\frac{3}{4}\right)^x$$
 Growth or Decay?

Domain:

Domain:

Domain: R

Change Up! Solve for the missing side lengths. Leave your answers in simplest radical form.

16. 60°

19.

