Rational Exponents

Notes \#
Omega 1

Scientific Notation:	Definitions of integral exponents:	n factors
A number is in scientific notation when it is in the form $\mathrm{a} \bullet 10^{\mathrm{n}}$, where $1 \leq \mathrm{a}<10$ and n is an integer.	If $\mathrm{n}=1, \mathrm{x}^{\mathrm{n}}=\mathrm{x}$.	If $\mathrm{n}>1, \mathrm{x}^{\mathrm{n}}=\overbrace{x \bullet x \bullet x \ldots x .}$
	If $x \neq 0, x^{0}=1$.	$\text { If } \mathrm{x} \neq 0, \mathrm{x}^{-\mathrm{n}}=\frac{1}{x^{n}}$

Properties of exponents: Suppose m and n are positive integers, and a and b are real numbers. Then the following properties hold.
Product property: $\quad a^{m} a^{n}=a^{m+n}$

Power of a power property: $\quad\left(a^{m}\right)^{n}=a^{m n}$
Power of a quotient property: $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$, where $\mathrm{b} \neq 0$
Power of a product property: $\quad(a b)^{m}=a^{m} b^{m}$
Quotient property: $\quad \frac{a^{m}}{a^{n}}=a^{m-n}$, where $\mathrm{a} \neq 0$

Definition of Rational Exponents: For any nonzero number b , and any integers m and n with $\mathrm{n}>1$,

$$
b^{\frac{m}{n}}=\sqrt[n]{b^{m}}=(\sqrt[n]{b})^{n}
$$

except when $\sqrt[n]{b}$ is not a real number.

Definition of $\underline{b^{\frac{1}{n}}}:$ For any real number $\mathrm{b} \geq 0$ and any integer $\mathrm{n}>1$,

$$
b^{\frac{1}{n}}=\sqrt[n]{b}
$$

This is also true when $\mathrm{b}<0$ and n is odd.

Ex A: Evaluate.

\#1)	$81^{\frac{1}{2}}$	\#2)	$27^{-\frac{2}{3}}$	\#3)	$7^{\frac{1}{4}} \cdot 7^{\frac{7}{4}}$
\#4)	$\sqrt[3]{125}$	\#5)	$(\sqrt[3]{343})^{-2}$	\#6)	$\frac{49^{\frac{5}{4}}}{49^{\frac{3}{4}}}$

Rational Exponents

Ex B: Express using rational exponent.

\#1)	$\sqrt[4]{x}$	\#2)	$\sqrt{x y^{3}}$	\#3)	$\sqrt[3]{8 x^{3} y^{6}}$
\#4)	$\sqrt{x^{6} y^{3}}$	\#5)	$\sqrt[3]{64 x^{9} y^{15}}$	\#6)	$\sqrt[5]{15 x^{3} y^{15}}$

Ex C: Express using radicals.

\#1) $15^{\frac{1}{5}}$	\#2)	$x^{\frac{3}{4}} y^{\frac{1}{4}}$	\#3)	$15 x^{\frac{1}{3}} y^{\frac{1}{5}}$

Ex D: Simplify.

\#1) $\left(\mathrm{x}^{-2}\right)^{4} \bullet \mathrm{x}^{8}$	\#2)	$\sqrt{x^{3} y^{2}} \cdot \sqrt{x^{4} y^{5}}$	\#3)
		$(5 a c)^{\frac{1}{3}}\left(a^{2} c^{3}\right)^{\frac{1}{3}}$	

Ex E: Word Problems.
\#1) Red blood cells are circular-shaped cells that carry oxygen through your bloodstream. The diameter of a red blood cell is about $7.75 \bullet 10^{-7} \mathrm{~m}$. Find the area of one of these cells. Express your answer in scientific notation.

