Rational Exponents

Notes # Omega 1

Scientific Notation:	Definitions of integral exponents:	n factors	
A number is in scientific notation when it is in the form $a \bullet 10^n$, where $1 \le a < 10$ and n is an integer.	If $n = 1$, $x^n = x$.	If $n > 1$, $x^n = x \bullet x \bullet x \dots x$.	
	If $x \neq 0$, $x^0 = 1$.	If $x \neq 0$, $x^{-n} = \frac{1}{x^n}$	
<u>Properties of exponents:</u> Suppose m and n are positive integers, and a and b are real numbers. Then the following properties hold.			
Product property: a ^m a ⁿ	$a = a^{m+n}$		
Power of a power property: $(a^m)^n$	$a^{n} = a^{mn}$		

$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$, whe	ere $b \neq 0$
$(ab)^m = a^m b^m$	
$\frac{a^m}{a^n} = a^{m-n}, \text{ when}$	are $a \neq 0$
nonzero > 1,	<u>Definition of $b^{\frac{1}{n}}$</u> : For any real number $b \ge 0$ and any integer $n > 1$,
	$b^{\frac{1}{n}} = \sqrt[n]{b}$.
	This is also true when $b < 0$ and n is odd.
	$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}, \text{ whe}$ $(ab)^{m} = a^{m}b^{m}$ $\frac{a^{m}}{a^{n}} = a^{m-n}, \text{ whe}$ nonzero $> 1,$

Ex A: Evaluate.

#1)	$81^{\frac{1}{2}}$	#2)	$27^{-\frac{2}{3}}$	#3)	$7^{\frac{1}{4}} \bullet 7^{\frac{7}{4}}$
#4)	3√125	#5)	(∛343) ⁻²	#6)	$\frac{49^{\frac{5}{4}}}{49^{\frac{3}{4}}}$

Rational Exponents

Ex B: Express using rational exponent.

$\#1) \qquad \sqrt[4]{x}$	$#2) \qquad \sqrt{xy^3}$	#3) $\sqrt[3]{8x^3y^6}$
$\#4) \qquad \sqrt{x^6 y^3}$	$#5) \sqrt[3]{64x^9y^{15}}$	#6) $\sqrt[5]{15x^3y^{15}}$

Ex C: Express using radicals.

$\#1)$ $15^{\frac{1}{5}}$	$#2) \qquad x^{\frac{3}{4}}y^{\frac{1}{4}}$	$#3) 15 x^{\frac{1}{3}} y^{\frac{1}{5}}$

Ex D: Simplify.

$\#1) \qquad (x^{-2})^4 \bullet x^8$	#2)	$\sqrt{x^3y^2} \cdot \sqrt{x^4y^5}$	#3)	$(5ac)^{\frac{1}{3}}(a^2c^3)^{\frac{1}{3}}$

Ex E: Word Problems.

#1) Red blood cells are circular-shaped cells that carry oxygen through your bloodstream. The diameter of a red blood cell is about $7.75 \cdot 10^{-7}$ m. Find the area of one of these cells. Express your answer in scientific notation.