Evaluate.

Hw # Omega 1A

#1)	3 ⁻⁴ • 3 ⁸	#2)	$\left(5^{\frac{3}{4}}\right)^4$	#3)	$\left(8^{\frac{-1}{2}}\right)^{\frac{-2}{3}}$
#4)	$(3^{-1} + 3^{-2})^{-1}$	#5)	$\frac{16^{\frac{3}{4}}}{16^{\frac{1}{4}}}$	#6)	$\frac{27}{27^{\frac{2}{3}}}$

Express using rational exponent.

#7)	$\sqrt[6]{b^3}$	#8)	$\sqrt[3]{125a^2b^3}$	#9)	$\sqrt[4]{24a^{12}b^{16}}$
#10)	$\sqrt[5]{32x^5y^8}$	#11)	$64^{\frac{1}{6}}$	#12)	$4^{\frac{1}{3}}a^{\frac{2}{3}}y^{\frac{4}{3}}$

Express using radicals.

$$\begin{array}{c|c} \#13) & (rt^{2})^{\frac{1}{5}}v^{\frac{3}{5}} \\ \#14) & \frac{x^{\frac{2}{3}}}{x^{\frac{1}{3}}} \\ & & & \\ \end{array} \end{array} + \begin{array}{c} \#15) & (x^{10}y^{2})^{\frac{1}{5}}a^{\frac{2}{5}} \\ & & \\ \end{array}$$

Simplify.

Word P	roblems.	Hw # Omega 1A
21)	Mathematicians have shown that a soap bubble will enclose a maximum of material. Architects have used this property to create buildings that e while using a small amount of material. If a soap bubble has a surface a given by the equation $V = 0.094\sqrt{A^3}$. Find the surface ar of 7.5 cm ³ .	a space with a minimum amount nclose a great about of space rea of A, then its volume, V, is rea of a bubble with a volume
22)	The typical period of the orbit of a space shuttle around Earth is approxi of Earth is approximately 6400 km. Use the formula $r = \sqrt[3]{\frac{GM_e t^2}{4\pi^2}}, where r represents the distance in meters from the statement of the$	mately 90 minutes. The radius the center of Earth to the presents the mass of Earth, Earth.
23)	All matter is composed of atoms. The nucleus of an atom is the center p most of the mass of the atom. A theoretical formula for the radius, r, of (1.3×10^{-15}) A ^{1/3} meters, where A is the mass number of the nucleus. Fin the mass number of an isotope of carbon is 12.	portion of the atom that contains the nucleus of an atom is $r =$ and the radius of the nucleus, if

1) 2) 3)	81 125 2	13)	$\sqrt[5]{rt^2v^3}$
	9	14)	$\sqrt[3]{x}$
4)	4	15)	$x^2 \cdot \sqrt[5]{y^2 a^2}$
5)	4	16)	x^{11}
0)	<u>1</u>	17)	125x
7)	b^{2}	18)	$8y^6$
8) 9)	$5a^{\frac{2}{3}}b$ $24^{\frac{1}{4}}a^{3}b^{4}$	19)	$a^{-2}b^8c^{-5}$ or $\frac{b^8}{a^2c^5}$
10) 11)	$2xy^{\frac{8}{5}}$	20) 21) 22) 23)	1 18.53 cm ² 254 km 2.98 x 10 ⁻¹⁵ m
12)	$y \cdot \sqrt[3]{4a^2y}$		