Logarithmic Functions

Notes \#
Omega 4
Exponential Function: A function of the form $y=a^{x}$, where a is a positive real number.

Logarithm: The inverse of $y=a^{x}$ is $x=a^{y}$. In the function $x=a^{y}, y$ is called the logarithm. It is usually written $y=\log _{\mathrm{a}} \mathrm{x}$ and is read y equals the log, base a, of x.

Logarithmic Function: A function in the form $y=\log _{a} x$.

Definition of Logarithmic Function:
The logarithmic function $y=\log _{a} x$, where $a>0$ and $a \neq 1$, is the inverse of the exponential function $y=a^{x}$.
Therefore, $y=\log _{a} x$ iff $x=a^{y}$.
Properties of Logarithms:
Suppose m and n are positive numbers, b is a positive number other than 1 , and p is any real number. Then the following properties are true.

Product Property: $\log _{\mathrm{b}} \mathrm{mn}=\log _{\mathrm{b}} \mathrm{m}+\log _{\mathrm{b}} \mathrm{n}$
Quotient Property: $\log _{\mathrm{b}} \frac{m}{n}=\log _{\mathrm{b}} \mathrm{m}-\log _{\mathrm{b}} \mathrm{n}$.

Power Property: $\log _{b} m^{p}=p \bullet \log _{b} m \quad \quad$ Property of Equality: If $\log _{b} m=\log _{b} n$, then $m=n$.
$\underline{\text { Log Identity 1: }} \log _{a} a^{x}=x$
$\underline{\text { Log Identity } 2:} a^{\log _{a} x}=x$

Ex A: Write each equation in logarithmic form.

$\# 1) \quad 4^{3}=64$	$\# 2) \quad 6^{-2}=\frac{1}{36}$	\#3) $49^{\frac{1}{2}}=7$	
$\# 1$	$\# 2$		\#3

Ex B: Write each equation in exponential form.

| $\# 1) \quad \log _{27} 3=\frac{1}{3}$ | $\# 2) \quad \log _{16} 4=1 / 2$ | \#3) $\log _{9} 27=\frac{3}{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\# 1$ | $\# 2$ | $\# 3$ |

Logarithmic Functions

Ex C: Evaluate each expression.

\#1)	$\log _{2} 32$		\#2)	$\log _{10} 1000$	
		\#1			\#2
\#3)	$\log _{7} \frac{1}{343}$		\#4)	$\log _{10} 0.0001$	
		\#3			\#4
\#5)	$\log _{2} \frac{1}{32}$		\#6)	$5^{3 \log _{5} 2}$	
		\#5			\#6

Ex D: Solve each equation.

\#1)	$\log _{6} \mathrm{x}+\log _{6} 9=\log _{6} 54$	\#2) $\quad \log _{7} \mathrm{n}=\frac{2}{3} \log _{7} 8$	

Logarithmic Functions

Ex D: Solve each equation.

Notes \#
Omega 4

| \#3) $4 \log _{2} \mathrm{x}+\log _{2} 5=\log _{2} 405$ | \#4) $\log _{8} 48-\log _{8} \mathrm{w}=\log _{8} 4$ |
| :---: | :---: | :---: | :---: |

Ex E: Word problems.
\#1) If the population of 100 bacteria doubles every fifteen minutes, how long will it take for the population to reach 12,800 ?

Logarithmic Functions

Ex F: Graph each equation or inequality.

$$
\# 1) \quad y=\log _{3}(x+1)
$$

\#1) Change to exponential form.
\#2) Solve your equation for x instead of y.
\#3) When doing your table substitute numbers into y instead of x.

Recall that exponential graphs have a horizontal asymptote. Therefore logarithmic graphs (inverse of exponential) have a vertical asymptote.
\#2) $\quad \mathrm{y}<\log _{2} \mathrm{x}$

