Graphs \& Inverses of Trig Functions
 2 - Graphing Sine \& Cosine

Periodic Function

A function in which for some real number α, $f(x+\alpha)=f(x)$ for each x in the domain of f.

$$
\begin{aligned}
& y=A \sin [K(\theta-\mathrm{PS})]+V D \\
& y=A \cos [K(\theta-\mathrm{PS})]+V D
\end{aligned}
$$

A

$A=$ the coefficient of the trig function. This determines the vertical stretching and shrinking of a graph. It also determines if the graph is reflected over the midline.

Amplitude

Amplitude of Sine and Cosine $=|A|=$ half the distance between the minimum and maximum values of the range of a periodic function with a bounded range.

Vertical Displacement

$\mathrm{VD}=$ the vertical translation

Midline

The horizontal axis used as the reference line about which the graph of a periodic function oscillates.

Period

$\mathrm{P}=$ the horizontal length of the unique part of the graph.

Phase Shift
PS = the horizontal translation.

Domain for trig functions

all the angles that can be put into the function (all the numbers included from left to right).

Range for trig functions

all the values that come out of the function (all the numbers included from bottom to top).

How to determine all the important things...
$y=A \sin [K(\theta-P S)]+V D$
A: A
Amplitude: $|A|$
Reflected over midline? Maybe
Vertical Displacement: VD
Midline: $\quad y=\vee D$
Phase Shift: P.S.
Period: $\frac{360^{\circ}}{K}$
$y=A \cos [\mathrm{~K}(\boldsymbol{\theta}-\mathrm{PS})]+V D$
A: A
Amplitude: $|A|$
Reflected over midline? Maybe
Vertical Displacement: VD
Midline: $\quad Y=\vee D$
Phase Shift: PS
Period: $\frac{2 \pi}{K}$

Graphs \& Inverses of Trig Functions

2 - Graphing Sine \& Cosine
State the essentials for each function.
\#1) $y=10 \sin \left(\frac{1}{2} \theta-45^{\circ}\right)+3$
$y=10 \sin \left[\frac{1}{2}\left(6-90^{\circ}\right)\right]+3$
A: 10
Amplitude: $|10|=10$
Reflected over midline? ~ U
Vertical Displacement: 3
Midline: $y=3$
Phase Shift: 90°
Period: $720^{\circ}=\left(\frac{360^{\circ}}{\frac{1}{2}}\right)$
\#2) $y=-243 \cos \left(\frac{1}{3} \theta+\frac{\pi}{4}\right)-2$

$$
y=-243 \cos \left[\frac{1}{3}\left(6+\frac{3 \pi}{4}\right)\right]-2
$$

A: -243
Amplitude: $|-243|=243$
Reflected over midline? yes
Vertical Displacement: - 2
Midline: $y=-2$
Phase Shift: $-\frac{3 \pi}{4}$
Period: $6 \pi=\left(\frac{2 \pi}{\frac{1}{3}}\right)$

Graphs \& Inverses of Trig Functions
2 - Graphing Sine \& Cosine

Write an equation of the sine function with the given information.
\#1) \quad amplitude $=3$, period $=720^{\circ}$, phase shift $=60^{\circ}, \mathrm{VD}=2$

Write an equation of the cosine function with with the given information.
\#1) amplitude $=100$, period $=4 \pi$, phase shift $=-\frac{\pi}{2}, \mathrm{VD}=0$

$$
\begin{aligned}
4 \pi k & =2 \pi \\
k & =\frac{1}{2}
\end{aligned}
$$

$$
\begin{gathered}
y= \pm 3 \sin \left[\frac{1}{2}\left(\theta-60^{\circ}\right)\right]+2 \\
720^{\circ} \mathrm{K}=360^{\circ} \\
\mathrm{K}=\frac{1}{2}
\end{gathered}
$$

\#2)

$$
\begin{gathered}
y=3 \sin \left[3\left(6-90^{\circ}\right)\right]+2 \\
\begin{array}{c}
120^{\circ} k=360^{\circ} \\
k=3
\end{array}
\end{gathered}
$$

\#3)

$$
y=-4 \sin \left[\frac{2}{5}\left(6--180^{\circ}\right)\right]-6
$$

$$
900^{\circ} 4=360^{\circ}
$$

$$
K=\frac{36}{90}
$$

$$
k=\frac{2}{5}
$$

\#5)

$$
y=\frac{3}{2} \cos \left[\frac{3}{2}\left(\theta-\frac{\pi}{3}\right)\right]+\frac{1}{2}
$$

$$
\begin{aligned}
\frac{4 \pi}{3} K & =2 \pi \\
K & =\pi X \cdot \frac{3}{2} \\
K & =\frac{3}{2}
\end{aligned}
$$

\#6)

$$
\begin{aligned}
& y=-\frac{2}{3} \cos \left[\frac{1}{2}(\theta--\pi)\right]-1 \\
& y=-\frac{2}{3} \cos \left[\frac{1}{2}(\theta+\pi)\right]-1
\end{aligned}
$$

$$
4 \pi K=2 \pi
$$

$K=\frac{1}{2}$

Graphs \& Inverses of Trig Functions
 2 - Graphing Sine \& Cosine

Graph each function. Graph a minimum of one period.
$y=\frac{1}{3} \sin \left[2\left(6-90^{\circ}\right)\right]+2$
\#1) $y=\frac{1}{3} \sin \left(2 \theta-180^{\circ}\right)+2$

A: $\frac{1}{3}$
A: $\frac{1}{3}$
Amplitude: $\left|\frac{1}{3}\right|=\frac{1}{3}$
Reflected over midline? 0
Vertical Displacement: ${ }^{2}$
Midline: $y=2$
Phase Shift: 90°
Period: $180^{\circ}=\frac{360^{\circ}}{2}$
$y=-3 \sin \left[\frac{1}{3}\left(6+\frac{\pi}{2}\right)\right]-1$
\#2) $y=-3 \sin \left(\frac{2}{3} \theta+\frac{\pi}{6}\right)-1$

A: -3
Amplitude: $|-3|=3$
Reflected over midline? Yes
Vertical Displacement: ${ }^{-1}$
Midline: $y=-1$
Phase Shift: $\frac{-\pi}{2}$
Period: $6 \pi=\frac{2 \pi}{\frac{1}{3}}$
$y=-2 \cos \left[3\left(\theta+90^{\circ}\right)\right]-2$
\#3) $y=-2 \cos \left(2 \theta+180^{\circ}\right)-2$

A: - -
Amplitude: $|-ว|=2$
Reflected over midline? Yes
Vertical Displacement: -
Midline: $y=$ つ
Phase Shift: -90°
Period: $180^{\circ}=\frac{360^{\circ}}{2}$
\#4) $y=\frac{1}{2} \cos \left(\theta-\frac{\pi}{3}\right)-1$

A: $\frac{1}{2}$
Amplitude: $\left|\frac{1}{2}\right|=\frac{1}{2}$
Reflected over midline? NO
Vertical Displacement: ${ }^{-1}$
Midline: $y=-1$
Phase Shift: $\frac{\pi}{3}$
Period: 2π

