Trig Identities \& Equations
 Unit 11.1 - Basic Trig IDs

Reciprocal Identities: The following trig identities hold for all values of A except those for which any function is undefined.
$\sin \mathrm{A}=\frac{1}{\csc \mathrm{~A}}$
$\csc A=\frac{1}{\sin A}$
$\cos A=\frac{1}{\sec A}$
$\sec A=\frac{1}{\cos A}$
$\tan A=\frac{1}{\cot A}$
$\cot A=\frac{1}{\tan A}$

Quotient Identities: The following trig identities hold for all values of A except those for which any function is undefined.
$\tan A=\frac{\sin A}{\cos A}$

$$
\cot A=\frac{\cos A}{\sin A}
$$

Pythagorean Identities: The following trig identities hold for all values of A except those for which any function is undefined.

$$
\begin{aligned}
& \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1 \\
& \tan ^{2} \mathrm{~A}+1=\sec ^{2} \mathrm{~A} \\
& 1+\cot ^{2} \mathrm{~A}=\csc ^{2} \mathrm{~A}
\end{aligned}
$$

Properties of Equality for Real Numbers

Multiplication (\& Division) Property
If $x=y$, then $x z=y z$
Addition (\& Subtraction) Property
If $x=y$, then $x+z=y+z$

Distributive Property

$x(y+z)=x y+x z$
$(y+z) x=x y+x z$

Reflexive Property

$\mathrm{x}=\mathrm{x}$

Symmetric Property

If $x=y$, then $y=x$

Transitive Property

If $x=y$ and $y=z$, then $x=z$.

Substitution Property

If $x=y$, then x may replace y in any equation.

Root Property

If $x=y+z$ and n is an odd integer, then
$\sqrt[n]{x}=\sqrt[n]{y+z}$.
If $\mathrm{x}=\mathrm{y}+\mathrm{z}$ and n is an even integer, then $\sqrt[n]{x}= \pm \sqrt[n]{y+z}$.

Exponential Property

If $\mathrm{x}=\mathrm{y}+\mathrm{z}$ and n is an integer, then $x^{n}=(y+z)^{n}$.

Multiplication Properties of Equality

Commutative Property

$x y=y x$

Associative Property

$(x y) z=x(y z)$
Multiplicative Identity
$x(1)=x$

Multiplicative Inverse Property
$x \cdot \frac{1}{x}=1$

Trig Identities \& Equations
 Unit 11.1 - Basic Trig IDs

Ex A: Solve for values of θ between 0° and 90°.
\#1)
If $\tan \theta=3$, find $\cot \theta$

$$
\cot \theta=\frac{1}{3}
$$

Draw a reference angle
in Quad I. Make a right
triangle. If needed find
the length of the third
side of the triangle
using Pythagorean
theorem. Write your
new ratio.
\#2) If $\sin \theta=\frac{5}{13}$, find $\cos \theta$.
 $\cos \theta=\frac{12}{13}$
$x^{2}+y^{2}=r^{2}$

$$
x^{2}+(5)^{2}=(13)^{2}
$$

$$
x^{2}+25=169
$$

$$
x^{2}=144
$$

$$
x= \pm 10
$$

\#3) If $\cos \theta=\frac{2}{3}$, find $\tan \theta$.

$$
\begin{aligned}
& \frac{3}{2} \sqrt{2} \\
& x^{2}+y^{2}=r^{2} \\
& (2)^{2}+y^{2}=(3)^{2} \\
& 4+y^{2}=9 \\
& y^{2}=5 \\
& y= \pm \sqrt{5}
\end{aligned} \quad \text { tan } \theta=\frac{\sqrt{5}}{2}
$$

Ex B: Express each value as a function of an angle in Quadrant I.

\#3) $\quad \cos 220^{\circ}=-\cos 40^{\circ}$

Trig Identities \& Equations
Unit 11.1 - Basic Trig IDs

Ex C: Write an expression for each of the following in terms of the given function.
\#1) $\sec \theta$ in terms of $\cot \theta$

$$
\begin{aligned}
& \sec ^{2} \theta=\tan ^{2} \theta+1 \\
& \sec \theta= \pm \sqrt{\tan ^{2} \theta+1} \\
&= \pm \sqrt{\frac{1}{\cot ^{2} \theta}+1} \\
&= \pm \sqrt{\frac{1}{\cot ^{2} \theta}+\frac{\cot ^{2} \theta}{\cot ^{2} \theta}} \\
&= \pm \sqrt{\frac{1+\cot ^{2} \theta}{\cot ^{2} \theta}} \\
&= \pm \sqrt{1+\cot ^{2} \theta} \\
& \sqrt{\cot ^{2} \theta}
\end{aligned}
$$

\#2) $\csc \theta$ in terms of $\cos \theta$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \frac{1}{\csc ^{2} \theta}+\cos ^{2} \theta=1 \\
& \frac{1}{\csc ^{2} \theta}=1-\cos ^{2} \theta \\
& \frac{1}{\frac{1}{1-\cos ^{2} \theta}}=\csc ^{2} \theta \\
& \left. \pm \sqrt{\frac{1}{1-\cos ^{2} \theta}}=\operatorname{css}^{2} \theta\right) \csc ^{2} \theta \\
& \pm \frac{1}{\sqrt{1-\cos ^{2} \theta} \cdot \sqrt{1-\cos ^{2} \theta}}=\csc \theta \\
& \pm \sqrt{1-\cos ^{2} \theta} \\
& \pm \frac{1-\cos ^{2} \theta}{1}=\sec \theta
\end{aligned}
$$

Ex D: Simplify.
\#1) $\csc ^{2} \theta-\cot ^{2} \theta$

$$
\begin{aligned}
& =\left(1+\cot ^{2} \theta\right)-\cot ^{2} \theta \\
& =1+\cot ^{2} \theta-\cot ^{2} \theta \\
& =1
\end{aligned}
$$

\#2) $\frac{\sin ^{2} x+\cos ^{2} x}{\cos ^{2} x}$

$$
\begin{aligned}
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

Trig Identities \& Equations

Unit 11.1 - Basic Trig IDs

\#3) $\quad \cos y \csc y$

$$
\begin{aligned}
& =\cos y \cdot \frac{1}{\sin y} \\
& =\frac{\cos y}{\sin y} \\
& =\cot y
\end{aligned}
$$

\#4) $\frac{\tan z}{\sin z}=\frac{\frac{\sin z}{\cos z} \cdot \cos z}{\sin z \cdot} \cos z$

$$
=\frac{\sin Z}{\sin Z \cos Z}
$$

$$
=\frac{1}{\cos z}
$$

$$
=\sec z
$$

\#5) $\quad \tan \mathrm{A} \csc \mathrm{A}$

$$
\begin{aligned}
& =\frac{\sin A}{\cos A} \cdot \frac{1}{\sin A} \\
& =\frac{1}{\cos A} \\
& =\sec A
\end{aligned}
$$

http://is.gd/Nu1Notespart1
http://is.gd/Nu1Notespart2 http://is.gd/Nu1Notespart3 http://is.gd/Nu1Notespart4

