Solving Triangles

12.2 - Law of Cosines

Law of Cosines: Let $\triangle X Y Z$ be any triangle with x, y, and z representing the measures of the sides opposite the angles with measures X, Y, and Z respectively. Then, the following is true.

Ex A: Solve each triangle. Round angle measures tothe nearest minute and side measures to the nearest tenth.
\#1) $\mathrm{x}=4, \mathrm{y}=5, \mathrm{~m} \angle Z=50^{\circ}$

$$
\begin{aligned}
& \mathrm{x}^{2}=\mathrm{y}^{2}+\mathrm{z}^{2}-2 \mathrm{yz} \cos \mathrm{X} \\
& y^{2}=x^{2}+z^{2}-2 x z \cos Y \\
& z^{2}=x^{2}+y^{2}-2 x y \cos Z
\end{aligned}
$$

When Do I use Law of Cosines?
If you are given one of the following cases:
Case \#1
SAS (two sides and included angle)

S

Case \#2
SSS (three sides)

If you are given SSS, you must find the largest angle with cosine.

Once you find the $4^{\text {th }}$ measure of the triangle, you can use Law of Cosines or Law of Sines to find the $5^{\text {th }}$ measure.

(2)

$$
\begin{aligned}
& z^{2}=x^{2}+y^{2}-2 x y \cos z \\
& z^{2}=(4)^{2}+(5)^{2}-2(4)(5) \cos 50^{\circ} \\
& z^{2}=16+25-40 \cos 50^{\circ} \\
& z^{2}=41-40 \cos 50^{\circ} \\
& z= \pm \sqrt{41-40 \cos 50^{\circ}} \\
& z \approx 3.9
\end{aligned}
$$

(3)
(4)

$$
\begin{gathered}
m \angle Y+51.8^{\circ}+50^{\circ}=180^{\circ} \\
m \angle Y+101.8^{\circ}=180^{\circ} \\
m \angle Y=70.2^{\circ}
\end{gathered}
$$

Solving Triangles
12.2 - Law of Cosines
\#2) The sides of a triangle measure $7.8 \mathrm{~cm}, 8.2 \mathrm{~cm}$, and 3.4 cm . Find the measure of the smallest angle to

$$
\begin{gathered}
a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \\
(3.4)^{2}=(7.8)^{2}+(8.2)^{2}-2(7.8)(8.2) \cos A \\
11.56=60.84+67.24-127.92 \cos A \\
11.56=128.08-127.92 \cos A \\
-116.52=-127.92 \cos A \\
\frac{116.52}{127.92}=\cos A \\
\cos ^{-1}\left(\frac{116.52}{127.92}\right)=A \\
24.4^{\circ} \approx A
\end{gathered}
$$

The smallest angle
is about 24.4°
\#3) The sides of a triangle measure $4.2 \mathrm{~cm}, 5.6 \mathrm{~cm}$, and 2.2 cm . Find the measure of the largest angle to the nearest minute. tenth

Draw the triangle.

Remember the smallest angle is opposite the smallest side.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& (5.6)^{2}=(2.2)^{2}+(4.2)^{2}-2(2.2)(4.2) \cos C \\
& 31.36=4.84+17.64-18.48 \cos C \\
& 31.36=22.48-18.48 \cos C \\
& 8.88=-18.48 \cos C \\
& \frac{8.88}{-18.48}=\cos C \\
& 118.7^{\circ}=C
\end{aligned}
$$

The largest ingle is about 118.7°

